A reverse quantitative isoperimetric type inequality for the Dirichlet Laplacian

نویسندگان

چکیده

A stability result in terms of the perimeter is obtained for first Dirichlet eigenvalue Laplacian operator. In particular, we prove that, once fix dimension $n\geq2$, there exists a constant $c>0$, depending only on $n$, such every $\Omega\subset\mathbb{R}^n$ open, bounded, and convex set with volume equal to ball $B$ radius $1$, it holds that $\lambda\_1(\Omega)-\lambda\_1(B)\geq c(P(\Omega)-P(B))^2$, where $\lambda\_1(\cdot)$ denotes $P(\cdot)$ its perimeter. The heart present paper sharp estimate Fraenkel asymmetry

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Quantitative Isoperimetric Inequality for Fractional Perimeters

Recently Frank & Seiringer have shown an isoperimetric inequality for nonlocal perimeter functionals arising from Sobolev seminorms of fractional order. This isoperimetric inequality is improved here in a quantitative form.

متن کامل

A Quantitative Isoperimetric Inequality on the Sphere

In this paper we prove a quantitative version of the isoperimetric inequality on the sphere with a constant independent of the volume of the set E.

متن کامل

Volume Ratios and a Reverse Isoperimetric Inequality

It is shown that if C is an n-dimensional convex body then there is an affine image C of C for which |∂ C| | C| n−1 n is no larger than the corresponding expression for a regular n-dimensional " tetrahedron ". It is also shown that among n-dimensional subspaces of L p (for each p ∈ [1, ∞]), ℓ n p has maximal volume ratio.

متن کامل

A Reverse Isoperimetric Inequality for Convex Plane Curves∗

In this note we present a reverse isoperimetric inequality for closed convex curves, which states that if γ is a closed strictly convex plane curve with length L and enclosing an area A, then one gets L ≤ 4π(A+ |Ã|), where à denotes the oriented area of the domain enclosed by the locus of curvature centers of γ, and the equality holds if and only if γ is a circle. MSC 2000: 52A38, 52A40

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atti della Accademia nazionale dei Lincei

سال: 2022

ISSN: ['1720-0768', '1120-6330']

DOI: https://doi.org/10.4171/rlm/973